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Abstract 
 

 
 This research investigated the effects of proton damage on single-walled carbon 

nanotube (SWCNT) transistors. The transistors were irradiated by 1.8 MeV protons to 

determine the damage induced in the SWCNTs and the device substrate using Raman 

spectroscopy, and to observe the effect on transistor functionality by measuring current-

voltage characteristics. Irradiation of the SWCNT transistors to a fluence of 

1×1013 protons/cm2 resulted in 67% increase in the Raman D/G peak intensity ratio, 

while at a fluence of 2×1013 protons/cm2 the increase in the D/G ratio was only 18%, 

likely due to radiation annealing. Current-voltage measurements indicated an increasingly 

negative threshold voltage shift in SWCNT transistors as a function of proton fluence: -

1.3 V after a fluence of 1×1012 protons/cm2and -1.9 V after a fluence of 2×1013 

protons/cm2. The drain current decreased 33% after a fluence of 1×1012 protons/cm2 and 

58% after a fluence of 2×1013 protons/cm2. Charge pumping of the SWCNT transistors 

revealed a significant error attributed to the combination of the non-uniform distribution 

of SWCNTs across the gate region, adsorbates on the exposed SWCNT and gate oxide 

surfaces, and inconsistency in transistor performance. The transistor hysteresis also 

increased as a function of the proton fluence due to interface and bulk charge trapping. 

This research provided insight into the effect on SWCNT transistors due to proton 

irradiations up to a fluence of 2×1013 protons/cm2 demonstrating both interface and bulk 

damage effects.  
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PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT 

TRANSISTORS 

 

I.   Introduction 

 

Originally discovered in 1991 by Sumio Iijima [1], carbon nanotubes (CNTs) have 

become a highlight of recent electronics research and development, encompassing a large 

variety of applications due to their unique electrical, thermal, and physical properties. In 

comparison to commonly utilized materials, CNTs have one hundred times the tensile 

strength of steel, a thermal conductivity higher than all but pure diamond and an 

electrical conductivity comparable to copper [2]. 

The electrical properties of carbon nanotubes are unique. The chirality of the carbon 

atoms in a CNT alter the conduction mechanisms such that CNTs can be either metallic 

or semiconducting. Semiconducting CNTs are potentially useful in applications such as 

transistors to replace silicon-based devices, which are increasingly difficult to fabricate as 

transistors continually decrease in size. Theoretically CNT-based transistors could exceed 

the current size limit of silicon-based transistors (22nm gate widths), increasing the 

number of transistors per area with reduced heat buildup due to their excellent thermal 

properties. Research has shown that carbon nanotubes are also more resistant to radiation 

than modern silicon-based devices [3-11].   

 The most common environment and application requiring the need for radiation-

resistant electronics involves space and satellite applications. This radiation environment 
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includes a broad spectrum of electron, proton and ion energies ranging from keV to 10’s 

of MeV. Proton energies in the 1.8 MeV range are experienced in the mid-energy range 

of the proton energy spectrum in low Earth orbit, as shown in Figure 1, reproduced from 

Stassinopoulus et al. [11]. 

 

 
 

Figure 1: Depiction of the proton energy spectra in low Earth orbit for both the solar minimum and 
maximum. The proton energy spectra is presented in terms of the average daily proton flux. 

Reproduced with permission from Stassinopoulus et al. [11]. 
 
 

The 1.8 MeV proton flux observed is between 2.5 to 5×106 protons/cm2 per day 

between solar maximum and solar minimum. Taking a nominal value of 3.5×106 

protons/cm2 per day, the yearly proton fluence observed in the low Earth orbit is 

approximately 1.3×109 protons/ cm2 at an energy of 1.8 MeV. With a large variety of 

satellite lifetimes ranging from 5 years to a record setting 50 years, the components in a 

satellite could experience a proton fluence of 1.8 MeV protons from 6.4×109 to 6.4×1010 

protons/cm2. However based on previous research, total proton fluences exceeding 1012 

protons/cm2 are required to observe significant radiation damage effects. 
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1.1   Objectives 

 
The objective of this research is to understand the physical and electrical changes 

to single-wall carbon nanotube transistors (SWCNT) due to exposure in a proton 

radiation environment. Following ion, electron and high-energy proton irradiations on 

SWCNT transistors by Francis et al. [3] and Hong et al. [4] and SWCNT films by Best 

[10], this work seeks to analyze proton irradiation damage effects in SWCNT transistors 

in order to correlate with the data and calculations in previous research. The total fluence 

was chosen based on the total displacement damage dose (DDD), which was based on the 

non-ionizing energy loss (NIEL) damage of 1 MeV electrons in silicon compared to that 

of 1.8 MeV protons in silicon. The ratio of the NIEL damage is 10-4 [12], resulting in the 

lower bound of the 1×1012 protons/cm2 fluence investigated, in comparison to a fluence 

of 1×1016 electrons/cm2 [3]. Specifically, this study seeks to correlate the current-voltage 

characterization, changes to the Raman spectra, and the results of charge pumping to the 

results of these previous studies, as well as to determine the effects of varying proton 

fluences. Proton irradiations were carried out at the Institute of Space Defense and 

Electronics (ISDE) Pelletron accelerator facility at Vanderbilt University. Measurements 

were taken pre- and post-irradiation to analyze and understand the radiation effects on 

these devices. Further analysis using Raman spectroscopy enabled an investigation of the 

radiation effects on the SWCNTs, as well as an understanding of the effects on device 

properties. Charge pumping provided further insight into the radiation damage due to 

trapping at all interfaces surrounding the SWCNTs and the substrate. In the future, these 
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transistors can be improved in terms of device performance and radiation hardness for 

use as field-effect transistors for space applications.   

 
1.2   Overview of Research 

 
This research consists of SWCNT back-gated field-effect transistors irradiated 

with 1.8 MeV protons to fluences ranging from 1012 to 1013 protons/cm2, in order to 

observe and quantify changes to the transistor functionality and the changes in the 

electrical properties of the materials (SWCNTs and SiO2) that constitute the devices. 

These changes may be caused by structural damage such as carbon atom displacement 

causing defects in the carbon nanotubes as well as by trap formation and charging in the 

silicon dioxide. Similar research has been conducted using electrons [3], [9] and higher 

energy protons on SWCNT back-gated transistors [4]. Electrical characterization includes 

pre- and post-irradiation current-voltage measurements for the purpose of observing 

changes in drain current, shifts in the threshold voltage, and changes to transistor 

hysteresis as a function of proton fluence. In addition to the current-voltage 

characterization, samples are measured using a charge pumping method modified from 

the standard method used on traditional metal oxide semiconductor (MOS) structures to 

determine the interface trap density at the SWCNT/SiO2 interface pre- and post-

irradiation. Pre- and post-irradiation Raman spectroscopy measurements are used to 

assess radiation damage to the SWCNTs by observing any changes to the D and G peaks 

as a function of proton fluence. All studies are completed at ambient temperature and 

humidity. 
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1.3   Impacts 

 
Previous research by Cress et al. on SWCNT thin films showed the expected 

decrease in conductivity due to non-ionizing radiation should be minimal based on the 

displacement damage dose for 1.8 MeV proton fluences in this study, as demonstrated in 

his investigation of alpha irradiation, in comparison to literature on carbon ions and 2 

MeV protons [8]. This change in resistivity was measured in other studies and found to 

be a function of radiation fluence using Raman spectroscopic measurements. However, 

studies based on ionizing damage show a significant decrease in the drain current [3], [9], 

via measurement of current-voltage characteristics and charge pumping current. 

In this research, minimal displacement damage to the SWCNTs due to knock-on 

effects was observed. This was confirmed by analyzing the changes in the Raman spectra 

as a function of proton fluence, which manifested itself as a minimal increase in the ratio 

of the intensity of the D peak relative to the intensity of the G peak. A significant increase 

in the D peak would correlate to significant CNT damage; however, this was not 

observed. The interface trap density did not increase as a function of proton fluence, 

which is in contrast to what is typically observed in irradiated MOS devices [12]; a 

negative shift in the threshold voltage was also observed.   

  



  

6 
 

II.   Background 

 
2.1   Metal-Oxide-Semiconductor Field-Effect Transistor 

 
 2.1.1   Theory 

 Silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs) are 

the basis for today’s transistors and computers. An illustration of a top-gated MOSFET 

cross section is shown in Figure 2. In the case of an n-channel MOSFET, a p-type silicon 

substrate is doped at the source and drain with excess dopants to make it n-type. The 

distance between the source and drain is considered the channel length, and the gate area 

covers the entire channel region. In the majority of devices, silicon dioxide (SiO2) is used 

as the gate dielectric.  

 

 
 

Figure 2:  Illustration depicting the cross section of a simplified n-channel silicon MOSFET. 
 

  
The MOSFET functions as a switch, so that when the voltage applied to the gate 

overcomes the device threshold voltage, and a small reverse bias is applied to either the 

source or drain, current can flow between the source and drain contacts. Current flows 
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after charge accumulates at the surface of the gate dielectric. In the case of an n-channel 

device, the p-type substrate beneath the gate oxide becomes saturated with the minority 

carrier (electrons) when a positive voltage is applied to the gate, drawing negative charge 

to the interface. In a way, the silicon at the interface becomes more n-like, creating a 

conduction channel between the source and the drain [13], [14].  

2.1.2   Charge Pumping 

 Interface traps exist at the interfaces in semiconductor devices due to the 

lattice mismatch between different materials. Interface traps function as charge trapping 

centers, and are an important measurement of the interface quality. Since radiation can 

change the quality of the interface through direct damage or by making carriers available 

to become trapped at the interface, characterization of the interface is important for 

assessing radiation response. 

Charge pumping is a technique that is commonly used to measure interface trap 

densities in MOS devices. By applying a voltage pulse on the gate such that the device is 

switched between accumulation and inversion, a recombination current is generated from 

holes and electrons  that are alternately brought to the surface and recombine at trap sites 

[15]. This measured recombination current is directly proportional to the interface trap 

density. By varying the frequency of the pulse, a trap density as a function of depth from 

the interface can be determined [15], [16].  

  A dependence on the shape of the pulse can be observed when comparing 

triangle and square waves, seen as a non-linear dependence of the recombination current 

as a function of frequency. This is observed because the frequency dependence of the rise 

and fall times gives rise to a frequency dependence of the emitted charge, and therefore a 
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frequency dependence of the charge recombining with the substrate majority carriers 

[15]. 

The variable frequency technique enables the determination of the spatial 

distribution of the traps at the interface. The interface trap profile in both directions from 

the interface can be estimated as [3], [16]: 

 
 

(1) 

 
where q is the electron charge, λ is the tunnel attenuation coefficient at the SiO2 interface, 

AG is the gate area, QCP = ICP/f is the charge recombined per cycle, f is the pulse 

frequency, z is the distance from the interface, and ΔE is the energy range swept between 

the high and low gate voltage, and can be estimated by [3], [15], [17]: 

 
 

(2) 

 
In (2), k is the Boltzmann constant, T is the temperature, vth is the carrier thermal 

velocity, σp/n is the carrier capture cross section, ni is the free carrier concentration, Vfb is 

the flat band voltage, and is estimated at the gate voltage where ICP= ICpmax/2, VT is the 

threshold voltage, ΔVG = VGH – VGL, and tr/f is the rise/fall time of the pulse. The carrier 

thermal velocity is calculated using the effective mass [3], [18]: 

 
 

(3) 

 
where ħ is the reduced Planck constant, d is the average diameter of the nanotube and v0 

is the Fermi velocity. The tunnel attenuation coefficient is calculated using [3], [16]: 
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(4) 

 
where Φe is the electron tunneling barrier height at the SiO2 interface. The distance z is 

estimated using following equations [3], [16]: 

 
 

(5) 

 
where 

  (6) 

 
 The values used for material constants were as follows: v0 = 8x105 m/s, taken from 

[9], [19], ni = ~1016 cm-3, taken from [3], [20], σp/n = 10-14/10-16, Φe = 2.94 eV, and me
* = 

0.41m0, taken from [16]. Values used in this study are the same as used in comparable 

studies on SWCNT transistors [3]. 

The general assumption behind charge pumping measurements is that the 

recombination current, ICP, is dominated by the trapping at the SWCNT/SiO2 interface, 

and that comparable numbers of electrons and holes are brought to the interface. 

However, this is not the case, since conduction in these devices is dominated by holes, 

and it is very difficult to bring a sufficiently large population of electrons to the surface in 

the bias ranges used. Additionally, since the SWCNTs in the transistors are unpassivated 

and the devices are measured in air, other trapping sites exist due to the adsorption of gas 

and water molecules on the SWCNTs and/or gate oxide surface, and these can contribute 

to the recombination current observed [3]. The non-uniformity of the SWCNT 
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distribution across the gate area, due to the fabrication method outlined previously, also 

adds to the potential error in estimating the trap density profile at the interface.  

 
2.2   Carbon Nanotubes 

 
 A carbon nanotube (CNT) is described as an arrangement of carbon atoms in a 

tube structure, also described by rolling a planar sheet of carbon atoms all having their 

atomic bonds satisfied in a sp2 planar configuration (graphene) [21]. Native defects exist 

in CNTs, though the defect density in most synthesized and purified CNTs is minimal. 

 
 

 
 

Figure 3: Wire diagram of carbon atoms depicting the rolled graphitic cylinder of sp2-bonded carbon 
atoms. Reproduced with permission from Best [10]. 

 

Sumio Iijima is most commonly credited for the discovery of CNTs in 1991 while 

studying the material deposition on the cathode during the arc-discharge synthesis of 

fullerenes [1], [2]. The study was completed using transmission electron microscopy 
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(TEM), which showed a variety of closed graphitic structures [1], [21]. These structures 

had never been observed previously on this scale, opening the world to CNT research and 

sensationalizing the material that promised to revolutionize functional and non-functional 

materials alike with its unique properties [22]-[24]. A model of a basic SWCNT is shown 

in Figure 3. 

2.2.1   Synthesis 

 Arc-discharge, laser ablation, and chemical vapor deposition (CVD) have been 

the three main processes for CNT growth. Both arc-discharge and laser ablation tend to 

produce large amounts of CNTs along with byproducts that require purification prior to 

device fabrication. CVD synthesizes the CNTs directly on a substrate [25]. 

Arc-discharge was the method used by Iijima in the synthesis and discovery of the 

first CNTs [1]. The main product of this process is a mixture of multi-walled carbon 

nanotubes (MWCNT) along with non-nanotube carbon and metal catalyst material. The 

removal of byproducts and purification is considered to be more expensive than synthesis 

itself [2]. This process uses two graphite rods separated by 1 mm that are enclosed in 

inert gas, such as helium or argon at low pressure. A dc arc voltage is applied under these 

conditions to generate fullerenes. However, when the anode graphite rod contains a metal 

catalyst MWCNT, SWCNT and pure graphite can be synthesized. Synthesis of 

MWCNTs has been further improved through the use of methane as a filler gas [2], [26]. 

 Laser ablation is known for the synthesis of high quality SWCNTs, in terms of the 

diameter and growth control, with the ability to control SWCNT diameters by changing 

the furnace temperature, metal catalyst and flow rate of the gas. SWCNTs are synthesized 

by introducing a laser of carbon dioxide into a carbon composite doped with a metal 
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catalyst target enclosed in a tube furnace filled with argon gas. The target is vaporized 

during the synthesis process, resulting in the formation of SWCNTs that are carried into a 

collector due to the flow of inert gas [2], [25], [26]. 

CVD allows for the location and alignment of the synthesized CNTs to be 

controlled through the use of a metal catalyst to “seed” the CNT growth. A hydrocarbon 

gas is thermally decomposed in the presence of the metal catalyst in a furnace to grow the 

CNTs [2], [25], [26]. 

 As synthesized, CNTs vary in their diameter and chiral angle and are produced 

along with impurities due to the synthesis of other carbon byproducts during each 

process. This leads to the necessity of a purification process to ensure the intended 

product is isolated. One process intended for the high purity separation of CNTs is a 

solution-based method using a surfactant. Separation is achieved using a bile salt such as 

sodium cholate, as a surfactant. This surfactant encapsulates every CNT with and the 

number of individual surfactant molecules required to surround the circumference the 

major determining factor in the buoyant density this density difference is based on the 

diameter of the CNTs. Ultra centrifugation of the solution is then applied to the solution 

resulting in a layer separation of CNTs by diameter as illustrated in Figure 4. 

2.2.2   Semiconducting vs. Metallic Nanotubes 

 SWCNTs are distinguished based on three different physical properties of the 

individual nanotube: diameter, chirality and length. The chirality distinguishes between 

the two different transport mechanisms observed, resulting in semiconducting or metallic 

behavior. Metallic SWCNTs are observed to follow quantum transport as a conduction 
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mechanism, while semiconducting SWCNTs show Coulomb gap type conduction due to 

the Coulomb interactions between localized electrons [28].  

 

 
 

Figure 4: Illustration depicting the separation of CNTs by ultra-centrifugation. The optical contrast 
between layers observed is due to the correlation between the diameter of the CNTs and the 

magnitude of their band gap. Reproduced with permission from Arnold et al. [27]. 
 

 The different chiralities of SWCNTs can be observed in Figure 5, which shows 

the three major chiral vectors resulting in armchair, chiral or zig-zag formations of the 

CNTs. The chiral vector is the axis about which the sheet of graphene would be rolled, 

defined by [29], [30]: 

  (7) 

 
where a1 and a2 are the unit vectors between two crystallographically equivalent sites of 

the hexagonal graphene lattice, so a nanotube can be described by the pair of integers 

(n1,n2). When  is observed as an integer multiple of three, the CNT exhibits 
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metallic conduction behavior, while for all other cases semiconducting behavior is 

observed. The zig-zag formation of SWCNTs or the (n1,0) chiral vector results in metallic 

or semiconducting SWCNTs based on the relation previously outlined. Arm-chair (n1,n1) 

SWCNTs are always metallic. Other chiral vectors not described are chiral formations 

that result in semiconducting SWCNTs. A diameter-dependent relationship of the bad 

gap for semiconducting SWCNTs is [29], [30]: 

 
 

(8) 

 
where vF is the Fermi velocity at ≈8×105 m/s [10], and dCNT is the diameter of the CNT.  

 

 
 

Figure 5: Planar wire diagram of sp2-oriented carbon atoms or a sheet of graphene depicting the 
three major chiral vectors that separate the electronic properties observed in SWCNTs. The chiral 
vectors depicted are the vectors a sheet of graphene sheet would be rolled about to form a SWCNT. 

Reproduced with permission from Best [10].  
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 2.2.3   Raman Spectroscopy 

 The Raman Effect occurs due to the inelastic scattering of monochromatic light 

incident upon a molecule, usually a laser. Only Raman active modes are observed. A 

Raman active mode is the resultant of the polarizability of a bond in a molecule where the 

polarizability must not be constant at the equilibrium position. Raman active modes can 

be both stretching and bending modes based on the molecular vibrations observed. The 

inelastic scattering of light is the cause of the vibration when light is absorbed by the 

molecule. When energy is absorbed, a difference in energy exists between the initial state 

and this new vibration state, which leads to a shift in the emitted photon’s frequency 

relative to the initial monochromatic laser wavelength [31], [32]. 

If the final vibration state is more energetic than initial state, conservation of 

energy dictates that the photon emitted due to the molecular vibration be shifted to a 

lower frequency based on the Planck relation: 

  (9) 

 
where E is the energy in eV, h is Planck’s constant, c is the speed of light, and v is the 

wavenumber of the Raman shift. This shift to a lower frequency is referred to as a Stokes 

shift, the commonly published and analyzed numbers. An Anti-Stokes shift is the result 

of the final vibrational state being of lower energy relative to the initial state, which 

results in a photon emitted at a higher frequency [31], [32]. 

 In CNTs, the most notable vibrational modes observed are the radial breathing 

mode (RBM), D, G, and G’ modes. Figure 6 depicts an example Raman spectra for 

metallic and semiconducting SWCNTs along with illustrations of the RBM and G 
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vibrational modes. The RBM is the vibration mode of the expansion and contraction of 

the cylindrical tubes and is particularly clear in high purity SWCNTs, while the G peak is 

attributed to the vibration modes observed in graphene or sp2 carbon. The D peak is 

related to the chirality of the SWCNT and is the result of defects and asymmetry 

observed in a graphene sheet with an overtone of G’. These defects can come in the form 

of dislocations, Frenkel pairs, or non-ideal bonding structures in the CNT. The G peak is 

observable at 1582 cm-1, which indicates interactions and vibrations down the long axis 

of the SWCNTs. The D peak is observable at 1350 cm-1, with its G’ overtone at 2700 cm-

1 [31], [32], [33]. 

The location of the radial breathing mode is dependent on the diameter of the 

SWCNT (dCNT) by [31]: 

 
 

(10) 

 
 
Figure 6: Raman spectra from metallic and semiconducting SWCNTs using a 785 nm laser, showing 
the key vibrational modes observable for SWCNTs. Illustrations depict the RBM and G-band, with 

arrows showing the directions of atom movement in each mode. ‘*’ denote vibrational modes of 
silicon, the substrate used. Reproduced with permission from Dresselhaus et al. [31]. 
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 2.2.4 Annealing 

 Defects can occur in CNTs from several potential sources. Defects such as 

localized lattice defects (vacancies, substitutions, pentagon-heptagon defects and 

heterojunctions) are typically formed during synthesis or by intentional damage. Short- 

and long-range disorder can be induced due to electrostatic potential fluctuations created 

by charges in the substrate or adsorbates on the CNTs. Mechanical deformations, such as 

strains and twists both affect the local band gap and act as conductance barriers [34]. 

 
 

Figure 7: Illustration depicting defects (right) and defect annealing (left) in SWCNTs. During 
annealing the double vacancy (D), single vacancy (S) and the interstitial carbon atom (A) rearrange 
due to thermal excitation to reach a more stable bonding state with the reformation of the carbon 

network. Reproduced with permission from Krasheninnikov et al. [36]. 
 
 

Thermal-induced annealing in the SWCNTs has been observed at temperatures 

exceeding 300°C [35], [36]. This defect annealing is governed by two mechanisms. The 

first mechanism is the healing of vacancies present, introduced either during synthesis or 

through radiation damage in this case, through the saturation of dangling bonds by 

forming non-hexagonal rings. The second annealing mechanism is the migration of 

carbon interstitials. Interstitials are atoms not in normal bonding positions that are 

capable of migrating or diffusing due to thermal energy in the system until reattaching at 
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a vacancy. Figure 7 illustrates single, double and interstitial defects and their possible 

recombination paths [36]. 

 
2.3   Carbon Nanotube Transistors 

 
 2.3.1   Theory 

 The dominant factor in the switching mechanism for SWCNT field-effect 

transistors is the Schottky barriers that forms at the SWCNT-metal contacts, while 

ballistic transport is assumed along the SWCNT conduction path. The Schottky barrier in 

this sense accounts for the band bending in a semiconductor at the semiconductor/metal 

interfaces [30], [37]. This barrier is formed based on the difference between the Fermi 

level of the metal contact and valence/conduction band in the SWCNT semiconductor. 

This barrier becomes variable due to the variability in the band gap of a SWCNT based 

on the nanotube diameter, so different nanotube diameters will result in different 

SWCNT band gaps and different barrier heights at the metal-SWCNT interface [37]. 

Figure 8 illustrates the presence of the Schottky barrier for different gate contacts. 

 

    
 

Figure 8: (a) Illustration of the band diagram with the Schottky barrier difference for different 
nanotube diameters, using the same metal at both contacts. (b) Illustration the Schottky barrier 

difference using different metals at each contact with a uniform carbon nanotube diameter. 
Reproduced with permission from Chen et al. [37]. 
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 The nanotube diameter variation results in a large current variation in device-to-

device performance, while the Schottky barrier at the metal contacts forms a constant 

depending on the metal contact used and asymmetry of the saturation currents can be 

induced by the use of different metals at each contact.  

 Undoped SWCNT transistors are observed to be ambipolar devices. However 

oxygen is readily adsorbed to the SWCNT surface when exposed to air, which results in a 

p-type doped transistor [30], [38], [39]. The oxygen adsorbed to the SWCNT surface acts 

as charge trapping centers, while it is also assumed that oxygen is a hole donor. Charge 

trapping centers could result in the suppression of the electron channel formation [39]. N-

type transistors can also be fabricated through exposure to potassium [38] or hydrogen 

[40] gas. The fabrication of both p- and n-type transistors is important to the use of 

SWCNT transistors in complementary logic devices and circuits.    

 2.3.2   Design/Structure 

 SWCNT field-effect transistors have been fabricated in several different designs 

similar to that of silicon-based transistors, such as a back- or top-gated transistor, and in 

more unique designs, such as wrap-around gated and suspended transistors [38]. 

 Back-gated SWCNT transistors are the most simplistic transistor design where the 

SWCNTs are deposited onto a prefabricated series of source and drain contacts over a 

gate oxide, while the substrate acts as a common gate for all transistors on the substrate. 

The most common substrates are silicon with a silicon dioxide gate oxide. This does not 

allow for the individual switching of transistors in current designs, and with lay-down 

methods for depositing the SWCNT across the source and drain contacts, a significant 

contact resistance between the SWCNT and metal exists [38]. Fabrication changes have 
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been made to reduce the contact resistance by depositing the source and drain contacts 

onto a patterned SWCNT film [4], or by growing the SWCNT across the source and drain 

to form aligned networks of SWCNT transistors [40], [41], [42]. Back-gated designs 

expose the SWCNT to atmospheric conditions, allowing for water and oxygen to adsorb 

to the SWCNT, thereby changing electrical properties. 

 Top-gated transistors are fabricated utilizing similar methods to back-gated 

transistors, where transistors are commonly fabricated on top of a silicon substrate with 

the source and drain contacts. A gate dielectric is deposited over the SWCNT gate area 

prior to the deposition of the top gate contact [41], [42]. Individual isolated gates for each 

individual transistor allows for the switching of each transistor independently, which is 

not available to a device with a common gate. Due to the ability to control the thickness 

of the deposited gate dielectric, a larger electric field can be generated using a lower 

voltage with thinner gate dielectrics. With a top gate dielectric, this allows for both p- and 

n-type transistors. N-type transistors require a passivation layer to prevent oxygen from 

adsorbing to the SWCNT surfaces that can also function as a barrier by fixing 

phosphorous or hydrogen adsorbed to the SWCNT surfaces. 

 Wrap-around gated SWCNT transistors were developed to improve the electrical 

performance of SWCNT transistors by depositing the gate dielectric and contact around 

the SWCNT. The gate dielectric and contact are etched off at the ends to provide a source 

and drain contact. This design was developed to reduce leakage currents and improve 

device on/off ratio. Suspended SWCNT transistors involve suspending a SWCNT over 

trenches so the SWCNT only comes into contact with the gate to reduce scattering at the 

interface [38]. 
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 As devices scale down, the use of silicon dioxide as a gate dielectric limits the 

size of a transistor due to its relatively low dielectric constant (κ). In order to continue 

scaling down, high-κ materials such as zirconium oxide and hafnium oxide are required 

to provide high capacitance without relying on small film thickness [41].  

 2.3.3   Hysteresis 

 Issues exist with SWCNT field-effect transistors that use a back gate design for 

the ease of fabrication. Exposure to gases and water allows for the adsorption of 

molecules onto both the exposed SWCNT and gate oxide surfaces. The adsorption of 

these molecules has been shown to affect the current-voltage characteristics of SWCNT 

field-effect transistors by creating a significant gate hysteresis [43]-[47].  

  

 
 

Figure 9: Illustration depicting the dynamic screening effect of injected charges. Holes or electrons 
are injected into traps based on the gate bias applied. Reproduced with permission from Ong et al. 

[43]. 
 
 

Water molecules are known to function as trapping centers that readily adsorb to 

SWCNT and SiO2 surfaces [44], [45]. Defect locations in the gate oxide, such as in the 
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bulk or at the surface, also play a role in the hysteresis observed [43], [46]. Bulk defects 

cannot be mitigated using surface passivation, which is the most common technique used 

to reduce transistor hysteresis and increase the device-to-device consistency [46], [47].  

Figure 9 illustrates a model describing the process of charge injection from the SWCNT 

into the surrounding materials (adsorbate and gate oxide traps) based on the gate bias. 

 The sole source of hysteresis has been isolated to the carbon nanotubes alone and 

surface passivation has been employed to remove the hysteresis observed through several 

methods. Hysteresis reduction has been achieved through by using a bottom dielectric 

with a molecular monolayer and by deposition of an oxide on top of the SWCNT. 

Hydrophobic self-assembling monolayers applied in a vacuum environment have been 

used to greatly improve transistor hysteresis and consistency [47]. 

 
2.4   Radiation Effects 

 
 2.4.1   Proton Damage Effects 

 When a target is struck by a highly energetic charged particle, such as a proton, 

electron, or heavy ion, varying mechanisms for the energy and momentum transfer exist. 

These mechanisms are broken into both primary and secondary effects, the primary 

effects are: 

• Electron excitation or ionization of individual atoms, 

• Collective electronic excitation, e.g., plasmons, 

• Breakage of bonds or cross-linking, 

• Generation of phonons, leading to heating of the target, 

• Displacement of atoms in the bulk of the target 
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• Sputtering of atoms from the surface. 

And secondary effects such as: 

• Emission of photons,  

• Emission of secondary or Auger electrons, leading to a charging of the target. 

The relative importance of each of the possible primary and secondary effects are 

highly dependent on the cross section of interaction for each respective interaction based 

on the material or atoms themselves [48]. When considering radiation damage to carbon 

and SiO2-based devices, it is useful to differentiate between radiation damage effects that 

lead to a displacement of atoms or knock on damage, and excitation or ionization 

reactions. 

 The primary defects generated in a crystalline solid or an ordered molecular solid 

are a combination of vacancies and interstitials in the lattice. Vacancies are the absence 

of an atom from its expected lattice position, while an interstitial is the displacement of 

an atom into a non-lattice position. A Frenkel pair is the combination of a vacancy and its 

adjacent interstitial [49]. 

 2.4.2   Silicon Damage 

 Displacement damage in solids, such as silicon-based materials, is determined 

analytically through the non-ionizing energy loss (NIEL) rate. Frenkel pairs and phonons 

are generated as a part of the energy introduced via elastic and nuclear inelastic 

interactions. NIEL can be calculated as follows: 

 
 

(11) 
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where N is Avogadro’s number, A is the atomic weight of the target material, σe is the 

total elastic cross section,  σi is the total inelastic cross section, and Te and Ti are the 

elastic and inelastic effective average recoil energies corrected for ionization loss, 

respectively [49]. 

  

 
 

Figure 10: Illustration relating the energy of incident protons into a silicon-based material to the 
frequency and extent of the knock on effects categorized as free defects, single cascades and many 

cascades. Reproduced with permission from Srour et al. [49]. 
 
 

Figure 10 illustrates the initial defects generated following a knock on effect using 

protons of varying energies. Based on the incident proton energy in the silicon material, a 

variety of initial damage effects are possible: free defects, single cascades, and multiple 

cascades. A free defect refers to the generation of a Frenkel pair. With increasing proton 

energy, the potential amount of energy imparted upon an individual silicon atom is 

increased, allowing for cascade effects where the displaced silicon atom displaces other 
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atoms due to the momentum it gains. This ignores annealing or defect reordering of the 

generated Frenkel pair and its location. [49].   

Ionizing radiation creates electron-hole (e-h) pairs in the SiO2 gate oxide for MOS 

capacitors and transistors. Relative to the holes generated in the valence band, electrons 

in the conduction band are found to be extremely mobile in SiO2. Initial recombination 

refers to the process of the electrons and holes immediately recombining following 

ionizing radiation exposure. However, a highly electric field-dependent process exists 

where a fraction of the holes remain unrecombined. This process can be expressed given 

the following equation [50]: 

  (12) 

where Nh is the total number of holes generated that escape initial recombination, f(Eox) is 

the hole yield expressed as a function of the electric field, g0 is the material dependent 

charge pair density given per rad for SiO2, D is the total dose, and tox is the thickness of 

the oxide. The fraction of uncombined holes generated for varying ionizing radiations is 

shown in Figure 11 [50]. 

 Holes generated can be trapped in both the SiO2 bulk and at the interface region 

of the MOS device, forming a positively charged oxide trap. Another explanation for the 

positive charge build up in the oxide is that hydrogen ions are likely released by holes 

that then “hop” through the oxide or remain trapped in the bulk or near the interface. 

Near the interface, oxygen diffusion generates oxygen vacancies that form as trapping 

centers for holes and hydrogen alike [50]. 
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Figure 11: Fraction of uncombined holes as a function of the applied electric field for gamma rays, x-
rays, low-energy protons and alpha particles. Reproduced with permission from Schwank et al. [50]. 

 
 
 The trapping probabilities of both electrons and holes in silicon materials have 

been studied as a function of the proton fluence. Effective trapping probabilities are a 

linear function of the proton fluence, and the trapping probabilities are independent of 

oxygen exposure and the silicon resistivity [51]. 

 2.4.3   SWCNT Damage 

 A wide variety of proton energies and fluences, along with electrons and other 

ions, have been explored in studies to determine the overall level of damage to SWCNTs 

and their physical and electrical properties through a variety of testing methods [7], [52]-

[57]. Curving of the SWCNTs, formation of short pieces, and an eventual complete 

amorphization of the SWCNTs have been observed after 2 MeV and 3 MeV proton 

irradiation, confirmed through both TEM and resistivity measurements [52]. A linear 
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increase in the resistivity was observed, up to the onset of SWCNT degradation, for 2 

MeV proton irradiations.  

 Beginning with low energy proton irradiations, 100 keV protons induced no 

observable damage to SWCNT networks with fluences up to 1×1014 protons/cm2, 

confirmed through both Raman spectroscopic measurements comparing the D/G peak 

ratios, and Hall Effect measurements of the sheet resistivity [53]. The optical properties 

of SWCNTs matrixed in poly(3-octylthiophene) were investigated following proton 

irradiations with 2 MeV protons in a fluence range of 5×1010 to 5.6×1015 protons/cm2. 

Optical absorption results indicated that there was little effect on the intraband transitions 

in the SWCNTs. However, a broadening of the spectra and decrease in the SWCNT 

radial breathing mode could be attributed to radiation-related degradation of the 

SWCNTs [54]. High energy proton irradiations, 10 and 20 MeV, at fluences up to 4×1012 

protons/cm2, revealed no significant change in the SWCNTs, verified through a 

comparison of the D/G peak ratio [55]. 

 Irradiations involving alpha particles, ions and gamma rays have shown more 

significant radiation-induced damage to SWCNTs and graphene [7], [56], [57]. Alpha 

irradiations up to a fluence of 3×1012 particles/cm2 resulted in a significant decrease in 

the SWCNT conductivities, as shown in Figure 12.  

Similar results were observed for gamma irradiations up to 505 kGy, 1×1015 

boron ions/cm2, and 5×1014 phosphorous ions/cm2; both with energies of 150 keV, and 35 

keV carbon ions. Significant increases in the D/G peak ratios were observed using Raman 

spectroscopic measurements [56], [57]. This increase in SWCNT damage as a function of 

the increasing ion fluence is shown in Figure 13.  
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Figure 12: Temperature-dependent conductivity measurements as a function of alpha fluence on 
SWCNT film samples showing a decrease in the conductivity with increasing radiation fluences. 

Reproduced with permission from Cress et al. [8]. 
 
 

 
 

Figure 13: Raman spectra for both SWCNT and MWCNT thin films as a function of the increasing 
ion fluences for 150 keV boron ions. Reproduced with permission from Rossi et al. [6]. 
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2.4.4   Previous Research – SWCNT FET  

 A significant amount of research exists on SWCNT physics, devices and radiation 

effects. This thesis follows the research of Francis [3], Cress [5], [8] and Best [10]. These 

papers use the same SWCNT material produced by NanoIntegris as in this research, 

along with similar SWCNT device designs and characterization techniques. Interest in 

Raman spectroscopy stemmed from research by Best [10], which is based on the 

correlation between significant radiation damage due to increasing ion fluence on 

SWCNT thin films by Rossi et al. [6].  

 Similar to this research on proton irradiation of SWCNT transistors, Francis et al. 

irradiated samples using 1 MeV electrons to fluences of 1×1016 to 1×1017 electrons/cm2 

producing Raman spectra as shown in Figure 14. This figure demonstrates the expected 

results for this research in agreement with results by Rossi et al. and Best. Charge 

pumping measurements were also carried out by Francis et al. on transistors of a similar 

design. Charge pumping is a standard method used to determine the interface trap density 

as a function of the distance from the interface for MOS devices. Results of this study are 

shown in Figure 15. 

  Current-voltage characterization is a standard measurement used to determine the 

device performance of silicon-based MOS transistors and SWCNT transistors alike [50], 

[3], [5]. Figure 16 illustrates results of current-voltage measurements by Francis et al. on 

SWCNT transistors with an Al2O3 gate oxide [3]. Similar results are expected for the 

devices used in this study, given the hole trapping generally observed in irradiated SiO2 

gate oxides. This agrees well with studies using high energy protons [4] and low energy 

electrons [9], where decreases in the drain current were observed. A significant goal of 
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this research is to correlate the amount of proton radiation damage to the changes in the 

Raman spectra, interface trap density, current-voltage characteristics, and the device 

performance.  

 

 
 

Figure 14: Raman spectra presented before and after irradiation (top), along with the D/G ratio as a 
function of channel width (bottom). Reproduced with permission from Francis et al. [3]. 
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Figure 15: Interface trap density as a function of distance from the SWCNT/gate oxide interface 
before and after irradiation and annealing. Reproduced with permission from Francis et al. [3]. 

 
 

 
 

Figure 16: Drain current and gate current magnitude as a function of the applied gate voltage before 
and after electron irradiation. Reproduced with permission from Francis et al. [3]. 
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III.   Experiment 

 

3.1   Purpose 

 
The objective of this research was to investigate the effects of proton irradiation 

on the overall performance of SWCNT transistors using Raman spectroscopy, charge 

pumping and current-voltage characterization measurements. Of particular concern was 

understanding how the protons affected the properties of the SWCNTs, the electrical 

characteristics of the substrate, and the overall device performance. The transistor 

fabrication and design is described first, followed by the experimental equipment 

descriptions. The experimental procedures and methods of data acquisition and analysis 

that were used in this research concludes this chapter. 

 
3.2   Experiment Setup and Design 

 
3.2.1   Transistors 

The carbon nanotube transistors used throughout this study were fabricated by the 

Naval Research Laboratory. SWCNTs used as the semiconducting material to fabricate 

the transistors were obtained as a powder from NanoIntegris, Inc. Both 98% 

IsoNanotube-S (semiconducting SWCNTs) and 98% IsoNanotube-M (metallic 

SWCNTs) were used for the two different device types. All SWCNTs produced by 

NanoIntegris, Inc. are grown using the arc discharge method outlined in the previous 

chapter. The nanotube diameters range from 1.2 to 1.7 nm and their lengths range from 

100 nm to 1000 nm. Two chips, each containing hundreds of transistors, were fabricated 
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using different SWCNT mixtures: 100% semiconducting SWCNTs and a 50/50 mixture 

of semiconducting and metallic SWCNTs. Figure 17 shows the general design for the 

SWCNT transistors. 

 
 

Figure 17: Diagram representing a cross section of the back-gated CNTFET design. 
 

 

SWCNTs were suspended in an aqueous solution of 1% w/v sodium dodecyl by 

horn sonication for 20 minutes. Following sonication, the SWCNTs were vacuum 

filtrated through a 0.2 micron mixed cellulose ester (MCE) membrane until almost dry. 

Residual surfactant is washed away with purified water until a clear stream of water is 

passing through the vacuum filter. The film and MCE membrane were washed though 

several acetone baths for a duration of 20-30 minutes to ensure that the MCE membrane 

was completely dissolved before a final wash in a cleaner solvent such as methanol [58]. 

The resulting thin film is transferred to the substrate by lifting out the film using the 

substrate as a base. The substrate consisted of a p-type silicon substrate with a resistivity 

of 1-10 ohm-cm and a 14-20 nm layer of SiO2 on the silicon for the gate oxide.  
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SWCNT network channel regions were formed using photolithographic patterning 

using a Shipley S1811, and were isolated using a 10 second O2 plasma etch. The 

photoresist was stripped using an acetone wash followed by a 2 hour heat treatment at 

300°C in air. Source and drain contacts were deposited via electron beam evaporation 

beginning with a 20 Å layer of titanium, followed with 380 Å of gold. Each reticle 

consists of transistors of different channel width and length, varying from 2 to 64 µm and 

4 to 128 µm, respectively, in steps of powers of 2 µm, resulting in 36 devices per reticle 

[5]. Figures 18 and 19 depict the semiconducting transistor chip along with an example 

reticle. 

 

 
 

Figure 18: The semiconducting SWCNT chip depicting the total number of reticles fabricated on a 
single chip. Only the center reticles contained devices due to the SWCNT film size. 
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Figure 19: A single transistor reticle with the 10× objective of an optical microscope, depicting the 36 
unique transistor devices present in each reticle. The channel length and width differences can be 

observed clearly. 
 
 

Chips were taken to the Air Force Research Laboratory Sensors Directorate to 

dice each chip into individual reticles. Chips were adhered to a UV curable dicing tape to 

secure the chip to the base plate for dicing. Dicing was performed by Sensors Directorate 

staff using a diamond blade rotating at high speed. Samples were numbered based on the 

chip type (semiconductor or semiconductor/metallic), along with the column and row 

designation. Semiconducting SWCNT transistors were labeled as EKS01, while the 

semiconducting/metallic SWCNT transistors were labeled as EKSM01, followed by the 

row and column designation in the form of C3R5, for example. 

3.2.2   Current-Voltage Characteristics 

All I-V curves were measured before and after irradiation, and were collected 

using a Keithley 4200 Semiconductor Characterization System and Signatone probe 

station. Samples were mounted to the stainless steel back plate of the Signatone probe 

station, which acts as the common back gate for all transistors, as shown in Figure 20. 

Each transistor is tested individually using tungsten probes to make connection to the 
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source and drain. The probes are each connected to an individual source-measurement 

unit (SMU) in the Keithley 4200-SCS.  

 

 
 

Figure 20: The Signatone probe station used to test individual transistors for both current-voltage 
characterization and charge pumping measurements. The Keithley 4200-SCS and Agilent 33220A 

connect directly to the probes via coaxial cables. 
 

 
Current-voltage measurements were made by applying +0.3 V to the drain 

contact, 0 V to the source contact, and sweeping the gate voltage from -5 to +5 V in 0.1 V 

steps while measuring the drain current [3]. An example of a dual-sweep current-voltage 

(I-V) measurement is shown in Figure 21 for a semiconducting SWCNT transistor 

depicting the general on/off characteristics and significant hysteresis observed in all 

samples. The same settings and parameters were used for both EKS01 and EKSM01 

samples. From these measurements, parameters such as device threshold voltage and 

hysteresis voltage are determined for each device, and are used to characterize device 

response as a function of radiation, as discussed below. 
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Figure 21: Representative I-V curve of a semiconducting SWCNT transistor on a linear plot. 

 

 
Prior to and following irradiation, the threshold voltage was determined for each 

transistor by finding the intersection of a line fit to the linear region on the reverse sweep 

of the I-V curve, with the drain current measured at a -5 V gate bias, as illustrated in 

Figure 22 below. Subtracting the pre-irradiation threshold voltage from the post-

irradiation threshold voltage yields the threshold voltage shift due to radiation damage.  

The hysteresis voltage was determined by measuring the gate voltage difference 

between identical drain current values on the forward and reverse I-V sweep, as indicated 

in Figure 23. For each transistor, the relative change in hysteresis with irradiation was 

determined at a drain current level that was 5 % from the on-state, 5 % from the off-state, 

and 50 % from the off-state. A significant reduction in drain current was also observed 

after irradiation for these devices, as shown in Figure 23. This drain current reduction, or 

downshift of the I-V curve, due to radiation damage was determined for each transistor by 



  

38 
 

calculating the difference in drain current between pre- and post-irradiation values at 

drain current levels measured at 50% of the on-state level.   
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Figure 22: Drain current as a function of gate voltage for the semiconducting SWCNT transistor 
EKS01, before and after irradiation, illustrating the method used to determine the threshold voltage 

shift. 
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Figure 23: Drain current as a function of gate voltage for the semiconducting SWCNT transistor 
EKS01, before and after irradiation, illustrating the reduction in drain current and hysteresis. 
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 The gate leakage current was also monitored before and after irradiation. In 

general, the measured gate current is due to carriers that tunnel through the oxide barrier 

and into the gate, and ideally, should be significantly lower than the measured source and 

drain currents.  For these devices, the gate leakage current was compared before and after 

irradiation to determine if there was a significant increase in the leakage current due to 

radiation damage in the oxide. Additionally, these  measurements were used to confirm 

that the gate leakage did not significantly affect the charge pumping current measured at 

the source and drain contacts, and that any decrease in either the charge pumping current 

or drain current was not being lost through the gate contact. 

3.2.3   Charge Pumping 

 Charge pumping measurements are non-destructive measurements that aid in 

quantifying the charge trapping present in the gate oxide, and are used in this study to 

characterize the radiation-induced damage in these SWCNT transistors. Originally 

devised for use with MOS capacitors, the method was revised by Groeseneken et al. [15] 

in 1984 to apply to MOS transistors. Two of the charge pumping techniques that are used 

in this study are the variable amplitude technique and the variable frequency technique. 

Both techniques require the use of a function generator to generate a square pulse on the 

gate of the device while grounding the source and drain, and measuring the current 

generated at the drain.  

Charge pumping measurements were carried out using a Keithley 4200-SCS as a 

data collection and measurement unit, while a voltage pulse was applied to the gate using 

an Agilent 33220A 20 MHz/Arbitrary Waveform Generator. This experimental setup is 

shown in Figure 24. For these measurements, a square-wave pulse was used, with a peak-
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to-peak voltage, VPP, of 2 V (±1 V). The frequency of the pulse was varied from 10 kHz 

to 1 MHz, and the recombination current at each frequency was measured at the source 

and drain contacts, which were biased at 0 V during the measurements. Originally, VPP 

was set at 10 V, but was reduced to 2 V after all transistors tested at 10 V were destroyed.  

Prior to irradiation, 3 reticles were measured to determine an average of the 

SWCNT/SiO2 surface trap density profile in the oxide. Following irradiation, the same 

test set up was used. However, all irradiated reticles were measured to determine an 

average surface trap profile for each proton fluence, to compare to the pre-irradiation 

average. Figure 25 shows a plot of the charge recombined per cycle, QCP, as a function of 

frequency for an unirradiated semiconducting SWCNT transistor.  

By taking the derivative of QCP as a function of the frequency, and using equation 

(1) given in Chapter 2, the interface trap density can be determined as a function of 

distance from the CNT/oxide interface. 

Error bars are calculated using the standard deviation of the calculated interface 

trap densities across all transistors on a reticle. Standard deviation (sN) is calculated 

using: 

 

 

(13) 

 
where N is the number of samples, xi is the interface trap density of the current sample, 

and  is the average interface trap density across all samples.  
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Figure 24: Experimental setup for charge pumping measurements. A positive bias is placed on the 
drain, where the current is measured as the charge pumping current ICP. The gate is pulsed between 

inversion and accumulation using a function generator. 
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Figure 25: Charge pumped per cycle, QCP, as a function of frequency for a semiconducting CNT 
transistor using a peak-to-peak voltage, VPP, of 2 V. Gate area dimensions are 2 µm long by 128 µm 

wide. 
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3.2.4   Raman Spectroscopy 

The purpose of the Raman study was to quantify the radiation damage in the 

SWCNTs separately from the damage induced in the substrate, as a function of the proton 

fluence. All Raman spectroscopic measurements were collected before and after 

irradiation, using a Renishaw inVia Micro Raman system at the Air Force Research 

Laboratory Materials and Manufacturing Directorate. These measurements were made 

using a 514.5 nm laser, at either 10 or 100% of the full laser power (21 mW), depending 

on the intensity of the SWCNT D and G modes observed using the 50× microscope 

objective lens. The 514.5 nm laser was chosen based on previous studies on the electron 

damage to SWCNT devices [10]. The system was set using an extended grading scan 

type with the 1200 l/mm to provide the most extensive spectrum scan. The spectrum 

range scanned for all measurements was from 100 to 2000 cm-1 to include the 

characteristic peak for silicon, along with the D and G peaks for the SWCNTs. A 

representative spectrum of the semiconducting and semiconducting/metallic SWCNT 

transistors are shown in Figures 26 and 27, respectively. Apparent differences observable 

between Figures 26 and 27 are due to the difference of SWCNT density between the two 

mixtures. A higher intensity G band relative to the characteristic silicon peak can be 

attributed to a higher density of SWCNT present in the thin film spanning the gate area. 

For the purpose of comparing different Raman spectra, the background spectrum 

was subtracted using a linear fit before normalizing the intensity to the G peak for each 

spectrum. This data manipulation is required since the background due to the reflected 

laser into the detector, the laser power settings, laser focus, and accumulation time is not 

identical in every single measurement. 
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Figure 26: Representative Raman spectrum for the semiconducting SWCNT transistor EKS01 prior 
to irradiation. 
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Figure 27: Representative Raman measurement for the semiconducting/metallic SWCNT transistor 
EKSM01 prior to irradiation. 
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Pre-irradiation Raman spectra were taken the week prior to proton irradiations. A 

random sampling of 10 measurements was taken across the 6 EKS01 reticles and 6 

EKSM01 reticles that would be irradiated, and all measurements were taken in the 

channel region. Following irradiation as outlined above, 5 Raman spectra were taken on 

every irradiated reticle, resulting in a total of 30 Raman spectra across the 6 reticles.     

3.2.5   Proton Irradiation 

After the pre-irradiation characterization of all reticles, samples were transported 

to the Pelletron facility for 1.8 MeV proton irradiation. The Pelletron electrostatic particle 

accelerator utilized for proton irradiation of the transistors is located at the Institute of 

Space Defense and Electronics (ISDE) on the Vanderbilt University campus. The 

accelerator was designed and manufactured by the National Electrostatic Corporation 

with a positive radio frequency (RF) ion source capable of producing up to 4 MeV H+, 6 

MeV He+, or 14.3 MeV O+ ions. For the purpose of these irradiations, only the 1.8 MeV 

H+ source was used.  

A total of 12 reticles, 6 reticles from each device type, were irradiated at 3 

different fluences: 1×1012, 1×1013 and 2×1013 protons/cm2; the total ion fluence was 

determined by the ISDE staff using a current integrator. Proton fluences were selected 

based on the NIEL damage in silicon equivalent to previous electron irradiation studies at 

1×1016 and 1×1017 electrons/cm2 [3], [10]. During irradiations, the nominal flux of 

protons was 1×109 protons/cm2sec, which resulted in irradiation times of 16.67 minutes, 

2.77 hours and 5.55 hours, respectively, to reach the fluences listed above. For all 

irradiations, the individual reticles were mounted to a stainless steel back plate using 

silver paint, as shown in Figure 28. The back plate was then attached to the assembly on 
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the sample mounting plate in the chamber, as shown in Figure 29. After all samples were 

mounted, the chamber was evacuated. 

Following irradiation, all samples were removed from the back plate using 

acetone to remove all the silver paint, followed by an ethanol wash to remove all 

impurities that the acetone would leave behind on the reticles. After this cleaning process, 

the samples were allowed to sit and dry in air prior to characterization. 

The stage used to mount the samples was grounded to the beam chamber, and 

allowed for multi-sample mounting due to its ability to rotate about the x- and z-axes, 

while allowing for minimal translation in the y-axis. In this way, multiple samples could 

be rotated into the beam line without breaking the vacuum seal, as depicted in Figure 30. 

Due to the horizontal orientation of the sample mounting stage, all samples were required 

to be mounted vertically using stainless steel plates to place samples into the beam line.  

 

 
 

Figure 28: The arrangement of sample reticles, along with several ride-along samples for other 
projects mounted on the steel back plate that was used as a charge sink during irradiations, and to 

fix the samples in the beam line. 
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Figure 29: Vertically mounted samples in the sample chamber, with several ride-along samples. The 
sample mount is aligned with the beam line and the dosimetry equipment can be seen attached to the 

sample stage. The arrow shows the direction of the beam line. 
  

 
 

 
 

Figure 30: The sample mounting stage showing the horizontal orientation of the stage required for 
vertical sample mounting. 
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IV.   Results and Analysis 

 

4.1   Raman Study 

 
 The Raman spectroscopic study provided a method to isolate the radiation 

damage to the individual SWCNTs from other damage effects on the device level. 

Depending on density of the SWCNT network across the gate area of the transistors, the 

results showed some correlation between the total proton fluence and an increase in the D 

band peak relative to the intensity of the G peak, in the normalized spectra. The results 

weakly correlated with the results observed by Rossi et al. [6] for ions and Francis et al. 

[3] and Best et al. [10], for the electron irradiations described in Chapter II. The results 

served as an important factor in determining the radiation damage in the SWCNT 

networks by quantification of the D/G peak ratios as a function of proton fluence. These 

results were compared to the transistors current-voltage properties, as well as the charge 

pumping current, which were used to characterize radiation-induced changes in the oxide 

layer. 

4.1.1   Semiconducting SWCNT Transistors 

 The semiconducting SWCNT transistor reticles were characterized by Raman 

spectroscopy measurements prior to and following irradiation, as outlined in Chapter III. 

While the characteristic peaks for SWCNTs were observed at 1340-1345 cm-1 and 1590-

1595 cm-1, the intensity of the Si and SiO2 peaks overwhelmed the Raman vibrational 

modes for the SWCNTs. From previous measurements, it was determined that the 

SWCNT networks dispersed across the gate area were of a low-density, and non-
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uniformly distributed. Even utilizing 100% laser power on the Raman spectroscopy 

system, the intensity of the G peak was on the order of 1% of the characteristic silicon 

peak intensity, leading to a small signal to noise ratio in the observed D/G peaks. This 

signal-to-noise ratio with respect to the minute D peak intensity is clearly observable in 

Figures 31 and 32, which shows the Raman spectra of the D and G peaks before and after 

irradiation to fluences of 1012, 1013, and 2×1013 protons/cm2. Table 1 lists the measured 

D/G ratios observed before and following irradiation, along with the standard deviations, 

for the semiconducting samples.   
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Figure 31: Normalized Raman spectra for EKS01, the semiconducting SWCNT transistor sample, 
before and after irradiation to fluences of 1012, 1013, and 2×1013 protons/cm2. Spectra are normalized 
to the magnitude of the G peak. The D peak is barely observable above the noise and background of 

the Raman measurement. 
 

 
Following irradiation, there was minimal dependence of the D/G ratios as a 

function of the proton fluence. Nominally, the D/G ratio remains fairly constant, 
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indicating little radiation-induced damage in the SWCNTs, likely due to the low density 

of SWCNTs across the gate area decreasing the overall probability of a knock-on effect 

displacing a carbon atom from the CNT lattice. 
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Figure 32: The measured D peak for the semiconducting sample, before and after irradiation to 
fluences of 1012, 1013, and 2×1013 protons/cm2. Spectra shows the significant amount of noise observed 
due to the low density of SWCNTs across the gate area. The spectra show that the intensity of the D 

peak does not increase or change significantly as a function of proton flux for this low density 
dispersion of SWCNTs across the gate. 

 
 
Table 1: The D/G ratios for EKS01, the semiconducting SWCNT transistor sample, before and after 

proton irradiation. The fluences are presented, with all irradiations performed using 1.8 MeV 
protons. 

 
EKS01 SEMICONDUCTING 

FLUENCE (cm-2) D/G Ratio Std. Dev 
PRE 0.107 0.099 

1×1012 0.100 0.057 
1×1013 0.132 0.049 
2×1013 0.091 0.083 
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As shown in Table 1, irradiation to a fluence of 1×1013 protons/cm2 introduced 

relatively more radiation damage to the SWCNT networks than the higher fluence of 

2×1013 protons/cm2, which is counter intuitive. An increase in the D/G ratio would 

indicate a higher percentage of vacancies and broken bonds within the SWCNTs, which 

are all symmetry breaking defects in the nanotubes. However, a collection of defects in a 

single spot that shears the nanotube would not appear through Raman spectroscopy since 

the symmetry about the sp2 bonds in the graphene sheet is not broken. Increasing proton 

fluence could result in more severed nanotubes, though the samples themselves could be 

actively annealed during irradiation due to internal heating. The only thermal conduction 

path from the samples in the beam line was the stainless steel back plate, which had no 

assisted cooling to maintain a constant temperature. No temperature measurements were 

taken, but heating could occur due to the energy deposited into the substrate during the 

proton irradiation. Localized heating of the substrate could potentially have an annealing 

effect, improving the D/G ratio by annealing out intrinsic defects.     

4.1.2   Semiconducting/Metallic SWCNT Transistors 

 Semiconducting/metallic SWCNT transistors were irradiated simultaneously 

semiconducting with the SWCNT transistors, so that any parallels could be observed 

between the two samples. The observed spectra in Figure 33 were as expected for a film 

of SWCNTs, with the intensity of the G band significantly higher than that of the Si and 

SiO2 peaks. The density of SWCNTs across the gate area in all semiconducting/metallic 

SWCNT transistors was much higher than that of the semiconducting SWCNT 

transistors. Table 2 shows the results of the irradiation study. 
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 The signal-to-noise ratio is significantly higher through simple observation in 

Figures 33 and 34 relative to the lower density semiconducting SWCNT transistors, 

along with a much smaller standard deviation between individual measurements. The 

D/G ratio increases by 34% after irradiation to a proton fluence of 1×1012 protons/cm2, 

and increases further to 66% above the pre-irradiation value at 1×1013 protons/cm2, 

consistent with what was observed in the semiconducting SWCNT samples. After a 

fluence of 2×1012 protons/cm2, the D/G ratio decreases, which is consistent with the trend 

observed previously in the semiconducting SWCNT transistors. This reproducibility, 

regardless of the type and density of the SWCNT network, aids in supporting the claim 

that the effect observed is likely in-situ radiation annealing. A similar effect was observed 

in previous studies utilizing electron irradiations at a constant energy, where the D/G 

ratio decreased at a higher electron fluence [10]. 

 
Table 2: The D/G ratios for EKSM01, the semiconducting/metallic SWCNT transistor sample, before 

and after proton irradiation. The fluences are presented with all irradiations performed using 1.8 
MeV protons. Values show an increase in the D/G ratio due to radiation, however the apparent trend 

increases up to 1×1013 protons. However, the same trend does not continue for irradiations up to 
2×1013 protons/cm2. 

 

 

 
 

 

 
 

EKSM01 SEMICONDUCTING/METALLIC 
FLUENCE (cm-2) D/G Ratio Std Dev 

PRE 0.067 0.0032 
1×1012 0.090 0.0016 
1×1013 0.111 0.0015 
2×1013 0.078 0.0026 
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Figure 33: Normalized Raman spectra for EKSM01, the semiconducting/metallic SWCNT transistor 
sample, before and after irradiation to fluences of 1012, 1013, and 2×1013 protons/cm2. Spectra are 

normalized to the magnitude of the G peak. 
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Figure 34: Raman spectra specifically showing the D peak observed in EKSM01 as a function of 
proton fluence. An increase is observed due to proton irradiation; however, a clear trend as a 

function of the fluence is not observed. 
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4.2   Charge Pumping Study 

 
 The next phase of the experiment was to determine the radiation damage to the 

oxide through the use of charge pumping measurements from which interface trap 

densities can be estimated. The importance of characterizing the trap density is two-fold, 

since interface traps contribute both to the device hysteresis and the drain current 

observed in current-voltage measurements. Results for the semiconducting SWCNT 

transistors correlate to previous studies by Francis et al. [3]. It is assumed that the 

resulting recombination current in the charge pumping study is dominated by trapping at 

the SWCNT/SiO2 interface. This assumption is not completely valid since atmospheric 

adsorbates on both SWCNT and oxide surfaces act as trap centers, also contributing to 

the measured recombination current. The non-uniformity of the SWCNT distribution 

across the gate channel from device to device and the variability in SWCNT density 

between devices adds to a likely underestimation of the recombination current [3]. Only 

the gate area covered by SWCNTs conducting current between the source and drain is 

measured through charge pumping. Since equation (1) requires the gate, a larger gate area 

will be assumed in comparison to the actual gate area measured. The higher density of 

SWCNTs in the semiconducting/metallic samples should minimize this underestimation 

of the recombination current relative to the semiconducting SWCNT transistor samples. 

 4.2.1   Semiconducting SWCNT Transistors 

 Charge pumping was completed on the same semiconducting reticles presented in 

the Raman spectroscopy study, both prior to and following irradiation. The large 

variability in the uniformity of SWCNTs across the gate area is clearly observable in 
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Figure 35, which shows the interface trap density as a function of the distance from the 

oxide interface and proton fluence. The error bars shown are the standard deviations 

across the transistors on the reticles tested at each fluence. These standard deviations are 

on the order of the mean value observed, which further supports the claim that there is 

significant non-uniformity in the SWCNT distribution across the gate area. The 

recombination current is the dominating factor in calculating the interface trap density. 

The only other factor that changes from transistor to transistor in the calculations is the 

threshold voltage, which is determined from the pre- and post-irradiation current-voltage 

characteristics. A change of 2 V in the threshold voltage only varies the calculated trap 

density by ~10%. The threshold voltage is used in equation (2) to estimate the energy 

range swept during charge pumping measurements 

 The general trend of the trap density profile can be observed in Figure 36, which 

shows the interface trap density as a function of distance from the SWCNT/oxide 

interface for the semiconducting SWCNT transistors, before and after irradiation to 

fluences of 1012, 1013, and 2 × 1013 protons/cm2. The trap density profile is similar profile 

for all pre- and post-irradiation charge pumping calculations. A reduction in interface trap 

density following proton irradiation occurs, similar to what was observed in [3]. This 

reduction in recombination current is potentially due to an increase in the gate leakage 

current as a function of proton irradiation. However, since the transistors are 

unpassivated, the major contributor to interface trapping is likely adsorbates on the SiO2 

and SWCNT surfaces. Therefore, the measured recombination current is mostly from 

adsorbates; while it is possible that the radiation-induced SWCNT/SiO2 interface traps 

are significant, the significance of the interface traps is not observed in the test setup.  
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Figure 35: Interface trap density as a function of distance from the interface for EKS01 
semiconducting SWCNT transistors, before and after irradiation to fluences of 1012, 1013, and 2×1013 
protons/cm2, plotted on a linear scale to highlight the error in the interface trap density calculated 
across all transistors on each reticle. The same interface trap profile is seen across all transistors, 

however no trend with proton fluence is observed.  
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Figure 36: Interface trap density as a function of distance from the interface for EKS01 
semiconducting SWCNT transistors, before and after irradiation to fluences of 1012, 1013, and 2×1013 

protons/cm2, plotted on a semi-log scale. A similar trend of trap densities is observed across all 
transistors. Calculated trap density is reduced post-irradiation relative to pre-irradiation. 
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Table 3 shows a summary of the calculated interface trap densities as a function 

of distance from the SWCNT/oxide interface, before and after irradiation to fluences of 

1012, 1013, and 2×1013 protons/cm2. Referring back to Figure 36, Table 3 shows that the 

change in interface trap density at each depth varies only by ~50% of the maximum 

calculated value, while the standard deviations observed in the figure exceed 100% of the 

maximum value calculated, so that only the extremes at each distance from the interface 

fall outside of the values calculated for every other fluence. Therefore, no significant 

trend is observed with fluence when the total error in the calculations is taken into 

account. Since Table 3 shows an interface trap density variation of ~2×1019 to 1×1021 cm-

3eV-1 and the nominal atomic density of silicon dioxide is known to be 2.3×1022 cm-3, the 

trap density is on the order of 0.1% to 10% eV-1 of the SiO2 at the interface. 

 
Table 3: Interface trap density for EKS01 semiconducting transistor reticles before and after proton 

irradiation to fluences 1×1012, 1×1013, and 2×1013 protons/cm2. 
 

 

 

 

 

 

 

 
4.2.2   Semiconducting/Metallic SWCNT transistors 

Charge pumping measurements were completed on the same samples studied in 

the Raman spectroscopy study pre- and post-irradiation. While the density of SWCNT 

 EKS01 SEMICONDUCTING 
Z (nm) Pre-Irr.  

(cm-3eV-1) 
1×1012 

(cm-3eV-1) 
1×1013 

(cm-3eV-1) 
2×1013 

(cm-3eV-1) 
1.088 1.14×1021 8.89×1020 4.28×1020 1.02×1021 
1.026 8.08×1020 6.07×1020 3.12×1020 7.10×1020 
0.945 4.08×1020 2.83×1020 1.60×1020 3.55×1020 
0.883 1.27×1020 8.34×1019 4.26×1019 1.12×1020 
0.822 2.04×1019 1.24×1019 1.11×1019 2.47×1019 
0.740 3.34×1019 1.25×1019 6.77×1018 1.28×1019 
0.679 7.95×1019 3.07×1019 2.69×1019 2.70×1019 
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across the gate area is greater than that of the purely semiconducting samples, Figures 37 

and 38 still shows a significant variation in the transistor-to-transistor recombination 

current, similar to what was observed in the semiconducting SWCNT transistors. 

Likewise, the similar trend of interface trap densities as a function of the distance from 

the interface is found for all fluences. However, in this case, an increase in the number of 

interface traps is observed, as shown in Table 4.  

 
Table 4: Interface trap density for EKSM01 semiconducting/metallic transistor reticles before and 
after proton irradiation to fluences of 1×1012, 1×1013, and 2×1013 protons/cm2. An apparent increase 

of interface traps at 1.09 nm as a function of fluence is observed. 
 

 

 

 

 

 

 

 
 

 
At a depth of 1.09 nm from the surface, there is a clearly observable increase in 

the interface trap density as a function of proton fluence. However, the values calculated 

exceed the atomic density of SiO2. Overall, the trap densities vary from 10% to 200% of 

the atomic density of SiO2, which indicates that atmospheric adsorbates contribute 

significantly to the estimated interface trap density. With a higher density of SWCNTs 

across the gate area, there is more CNT surface area for water molecules and gasses to 

adsorb to, which would lead to an increase in the measured recombination current, and 

thus the calculated interface trap density.  

 EKSM01 SEMICONDUCTING/METALLIC 
Z (nm) Pre-Irr.  

(cm-3eV-1) 
1×1012 

(cm-3eV-1) 
1×1013 

(cm-3eV-1) 
2×1013 

(cm-3eV-1) 
1.088 1.25×1022 2.33×1022 2.32×1022 4.15×1022 
1.026 7.95×1021 1.25×1022 1.78×1022 1.68×1022 
0.945 8.02×1021 1.02×1022 2.43×1022 1.02×1022 
0.883 5.07×1021 4.04×1021 1.45×1022 3.49×1021 
0.822 2.72×1021 6.76×1020 3.09×1021 6.09×1020 
0.740 9.56×1020 4.21×1020 1.18×1021 3.89×1020 
0.679 2.21×1021 2.07×1021 3.99×1021 1.85×1021 
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Figure 37: Interface trap density as a function of distance from the interface for the EKSM01 
semiconducting/metallic SWCNT transistors, before and after irradiation to fluences of 1012, 1013, 

and 2×1013 protons/cm2, plotted on a linear scale to highlight the error in the interface trap densities 
calculated across all transistors on each reticle. 
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Figure 38: Interface trap density as a function of distance from the interface for the EKSM01 

semiconducting/metallic SWCNT transistors, before and after irradiation to fluences of 1012, 1013, 
and 2×1013 protons/cm2, plotted on a semi-log scale. 
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The standing hypothesis for both semiconducting and semiconducting/metallic 

SWCNT transistors is surface adsorbates dominate the calculated interface trap densities, 

while the non-uniform distribution of the SWCNTs across the gate area further adds to 

the error in calculations. 

 
4.3   Current-Voltage Characterization Study 

 The previous Raman and charge pumping studies were used to aid in analyzing 

and correlating the radiation damage observed in the SWCNTs and substrate to the 

effects observed on transistor functionality as a whole. Both semiconducting and 

semiconducting/metallic transistors were measured prior to and following irradiation to 

determine the changes in transistor properties as a function of the total proton fluence.  
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Figure 39: Drain current as a function of gate voltage for semiconducting/metallic SWCNT 
transistors EKSM01 before and after irradiation to a fluence of 2×1013 protons/cm2. Drain current 
shows the poor on/off characteristics with a hysteresis of 0.1 V before proton irradiation and 0.5 V 

after. 
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 As outlined in Chapter III, all semiconducting SWCNT transistors were 

characterized to determine the threshold voltage shift, change in drain current, change in 

hysteresis, and change in gate current leakage as a function of irradiation. The 

semiconducting/metallic SWCNT transistors showed no on/off characteristic, and exhibit 

a drain current that is linear with gate voltage, as illustrated in Figure 39.   

Results observed in the semiconducting devices correlate to previous studies on 

SWCNT transistors exposed to electron irradiations [3], and gamma irradiations [5]. 

Effects observed in previous studies were due to ionizing radiation depositing charge into 

the gate oxide and formation of interface traps at the semiconductor/gate oxide interface. 

 4.3.1   Semiconducting SWCNT Transistors 

 The semiconducting SWCNT transistors were characterized by current-voltage 

measurements as described in Chapter III. Device-to-device performance varied greatly 

and due to the low density of SWCNTs across the gate area, only transistors with gate 

lengths of 2 and 4 µm were functional. Transistors exhibited a variety of on/off ratios 

ranging from half an order of magnitude to 103, where the off-state of the device dropped 

into the thermal noise of the instrumentation ( <1×10-15 A at the drain with a gate leakage 

current exceeding the measured drain current).  

 The threshold voltage was determined as outline in Chapter III, utilizing the linear 

region of the I-V curve with the drain current at the on-state of the reverse sweep from a 

gate voltage of +5 to -5V. The results of the threshold voltage analysis using the I-V 

curves are presented in Table 5. The threshold voltage shift is averaged across each 

reticle and presented with the standard deviation to show the variation across all 
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functioning devices.  A negative shift in the threshold voltage can be explained by 

positive charge build up in the gate oxide, in which there is a buildup of low mobility 

holes. The holes in the oxide act as positive charge that requires a larger negative bias on 

the gate to switch the transistor into the on state. A depiction of the location of the charge 

build up can be observed in Figure 40. 

 
Table 5: The threshold voltage shift in EKS01 semiconducting SWCNT transistors following 

irradiation to fluences of 1×1012, 1×1013, and 2×1013 protons/cm2. While the standard deviation is 
significant, an apparent trend can be observed as the threshold voltage shift increases with increasing 

proton fluence. 
 

 
 

 
 

Figure 40: Diagram depicting the location of charge deposition in the gate oxide due to continuous 
proton irradiation. 

 
 

 EKS01 SEMICONDUCTING  
FLUENCE (cm-2) Sample Threshold Voltage 

Shift (V) 
Std Dev 

1×1012 C3R10 -1.243 0.761 
C4R9 -1.360 0.650 

1×1013 C3R11 -1.400 0.562 
C5R9 -1.513 1.008 

2×1013 C2R9 -1.917 0.796 
C3R7 -1.911 0.804 
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Figure 41 shows a clear trend of increasing threshold voltage shift with an 

increasing proton fluence, indicating positive charge buildup in the oxide. This positive 

charge could exist due to several possible mechanisms. The first mechanism involves the 

generation of electron-hole pairs due to ionizing radiation from incident protons. Since 

the mobility of electrons is greater than the mobility of holes in SiO2, the electrons are 

swept away in the presence of an electric field before recombination can take place, 

leaving a surplus of holes in the oxide. The second potential mechanism would be the 

release of hydrogen ions as protons, which can migrate to the interface under a positive 

gate bias. Both mechanisms could result in trapped positive charge and would potentially 

be fluence dependent.  
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Figure 41: Threshold voltage shift as a function of proton fluence illustrating the increasing negative 

shift in the threshold voltage with increasing proton fluence for EKS01 semiconducting SWCNT 
transistors following proton irradiation. 
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 After exposure to a proton fluence of 1×1012 protons/cm2
, an average threshold 

voltage shift of -1.30 V is observed averaged over the two irradiated reticles, which shifts 

an average of an additional -0.15 V after 1×1013 protons/cm2. A maximum threshold 

voltage shift of -1.91 V occurs after a total fluence of 2×1013 protons/cm2, which is a 32% 

increase in threshold voltage shift from the previous fluence. The trend follows the 

expected results of increasing proton radiation damage to the substrate, since minimal 

damage to the SWCNT network was observed in the Raman study. 

The relative downshift or decrease in drain current was determined through a 

comparison of the drain current at 50% of the on-state prior to and following irradiation, 

as described in Chapter III. This drain current reduction is due to a combination of two 

mechanisms. The first mechanism is direct knock on damage to the SWCNTs by the 

proton irradiation causing vacancies and broken bonds in the individual CNTs, and leads 

to a decrease in the carrier mobility. The second mechanism is due to trapped charge in 

the oxide, which was confirmed by the existence of a threshold voltage shift. Trapped 

charge in the oxide causes a reduction in carrier mobility, having the greatest effect near 

the SWCNT/SiO2 surface. Charge pumping was implemented to measure the trap density 

at the interface; however, the presence of adsorbates removed this technique as a viable 

way to verify the trap density.  

The calculated relative downshifts are shown in Table 6, which shows a clear 

increase in the relative downshift as a function of increasing proton fluence. This increase 

in the relative downshift correlates well with the increase in the threshold voltage shift 

observed previously. Between 1×1012 and 1×1013 protons/cm2 the relative downshift in 

drain current increases by 26%, which is larger than the 11% increase in the threshold 
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voltage shift between these two fluences. The difference in relative downshift after a 

fluence of 2×1013 protons/cm2 is 38%, which correlates closer to the 32% increase in the 

threshold voltage shift. 

 
Table 6: Table of the calculated downshift, or reduction in drain current relative to the initial drain 

current at the 50% level of the on/off point, before and after proton irradiation. Values show an 
increasing downshift with increasing proton fluence, which correlates to an increasing reduction in 

drain current. Presented values are an average across all transistors on a single reticle.   
 

 EKS01 SEMICONDUCTING  
FLUENCE (cm-2) Sample Relative Downshift  Std Dev 

1×1012 C3R10 0.341 0.263 
C4R9 0.327 0.247 

1×1013 C3R11 0.391 0.264 
C5R9 0.453 0.172 

2×1013 C2R9 0.537 0.321 
C3R7 0.626 0.171 

 

 

 Transistor hysteresis was calculated as described in Chapter III. The cause of 

transistor hysteresis as observed in all transistors, is due to carrier trapping at trap sites 

originating from adsorbed gas and water molecules on the SWCNTs and oxide interface, 

and at interface and oxide traps in the SiO2 layer. The hysteresis should correlate with the 

charge pumping calculations since the observed hysteresis is dependent on the interface 

trap density. The measured hysteresis is shown in Table 7 for the semiconducting 

SWCNT transistors before and after proton irradiation. Similar to the estimates from the 

charge pumping measurements, there is a significant standard deviation observed in the 

relative change between the hysteresis before and after irradiation. The largest hysteresis 

voltage is observed nearest to the on and off states, though the standard deviation is also 

the most significant at these locations, which indicates that the current-voltage 
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characteristics are least stable near the on and off state. This is why the 50% point is used 

as a standard for determining the relative downshift in drain current. A weak trend is 

observable at the 50% on/off state, which shows an increase in hysteresis with increasing 

proton fluence. However, the standard deviation is still significant. 

 
Table 7: The relative change in the measured transistor hysteresis for EKS01 semiconducting 

SWCNT transistors before and after proton irradiation. The hysteresis is presented at three selected 
states to show the variability across each transistor and the instability of transistor properties near 

the on and off state. 
 

 EKS01 SEMICONDUCTING  
FLUENCE (cm-2) 1×1012 1×1013 2×1013 

 
Relative 
Change 

Std 
Dev 

Relative 
Change 

Std 
Dev 

Relative 
Change 

Std 
Dev 

5% FROM ON STATE 0.488 1.536 0.963 0.748 2.210 3.505 
50% 0.073 0.481 0.072 0.406 0.173 0.450 

5% FROM OFF STATE 0.740 2.134 0.354 0.267 0.618 0.831 
 

 The gate leakage current was analyzed using the method described in Chapter III. 

Leakage current through the gate during transistor operation is caused by tunneling 

through the gate oxide. Radiation is capable of increasing the gate leakage current 

through increased damage and trap sites that are created in the oxide in addition to the 

traps that already exist. Figure 42 shows the gate leakage current as a function of the gate 

voltage. No clear trend in gate leakage current is observable as a function of the proton 

fluence. A decrease in gate leakage current is actually observed following proton 

irradiation. Since the decrease is actually very consistent, as shown in Table 8, this 

suggests that the change in gate leakage current is a result of the contact resistance 

between the back gate of the reticle to the base plate on the probe station or radiation 

induced damage that increases the resistance through the back gate. The applied voltage 
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is a constant, and based on ohm’s law (V=IR) a decrease in current relates directly to an 

increase in the resistance.  

 

Table 8: The average gate leakage current at each proton fluence along with the change in current 
relative to the pre-irradiation measurements for EKS01 semiconducting SWCNT transistors 

following 1.8 MeV proton irradiation. The standard deviation is presented as a measure of the device 
to device consistency in the gate leakage current. A nearly constant relative decrease can be 

observed. 
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Figure 42: The average gate leakage current across all reticles of EKS01 at each proton fluence as a 
function of the gate voltage. There is no observable increase in the gate leakage current due to 

increasing proton fluence, instead a uniform decrease is observed at all proton fluences. 
  
 
 

 EKS01 SEMICONDUCTING 
FLUENCE (cm-2) Gate Current Leakage 

(A) 
Std Dev Δ 

PRE 1.463×1010 1.481×1010 - 
1×1012 5.379×1011 3.663×1011 -6.323×101 
1×1013 6.093×1011 9.420×1011 -5.835×101 
2×1013 5.113×1011 4.695×1011 -6.505×101 
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4.3.2   Semiconducting/Metallic Transistors 

 The semiconducting/metallic SWCNT transistors were characterized by current-

voltage measurements as described in Chapter III. Device-to-device performance was 

observed to be very consistent, with the drain current scaling with gate area, similar to 

what is observed in conventional MOS devices. Their performance as transistors is poor 

since the semiconductor/metallic SWCNT mixture functions more as a resistor than a 

semiconducting material, resulting in current-voltage characteristics that are nearly linear, 

with no observable on/off states. 

 The same method previously described for the semiconducting SWCNT 

transistors was used to analyze the pre- and post-irradiation shift in the drain current for 

these semiconducting/metallic transistors. The calculated relative downshift before and 

after proton irradiation is presented in Table 9. Although there is an increase in the D/G 

ratio observed in the Raman study and an increase in the interface rap density as a 

function of fluence for these devices, there is no clear trend in the relative downshift as a 

function of proton fluence, which is in contrast to what is observed in the Raman and 

charge pumping measurements.  

 
Table 9: The measured downshift, or reduction in drain current relative to the initial drain current, 
before and after proton irradiation. A downshift is observed due to proton irradiation, however as 

the values make it apparent there is no function of fluence observed. 
 

 EKSM01 SEMICONDUCTING/METALLIC 
FLUENCE (cm-2) Sample Relative Downshift  Std Dev 

1×1012 
 

C3R10 0.442 0.208 
C4R9 0.226 0.100 

1×1013 
 

C3R11 0.440 0.101 
C5R9 0.400 0.037 

2×1013 C2R9 0.465 0.095 
C3R7 0.317 0.070 
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Hysteresis is determined using the method previously outlined for the 

semiconducting transistors; but is altered to only use the 50% on/off state due to a 

combination of the variability observed in the semiconducting SWCNT transistors and 

the fact that no hysteresis is observed at the 5% points in the semiconducting/metallic 

SWCNT transistors. Table 10 shows the results of the hysteresis study on EKSM01. 

Measurements show an increase in the hysteresis observed as a function of the proton 

fluence, similar to that observed in EKS01, however the change in hysteresis is more 

consistent. This could be attributed to the consistency observed in all of these transistors. 

The increase in transistor hysteresis correlates well with the charge pumping study, which 

showed an increase in the overall interface trap density as a function of proton fluence.   

 
 

Table 10: The relative change in the measured transistor hysteresis before and after irradiation for 
the EKSM01 semiconducting/metallic SWCNT transistors. The hysteresis is measured at the 50% 

level of the on/off state for all transistors. An increase in the relative change is observed as a function 
of the proton fluence. 

 
 EKSM01 SEMICONDUCTING/METALLIC 
FLUENCE (cm-2) 1×1012 1×1013 2×1013 

 Hysteresis Std 
Dev 

Hysteresis Std 
Dev 

Hysteresis Std 
Dev 

PRE-IRR. 0.290 0.062 0.224 0.066 0.280 0.201 
POST-IRR. 0.372 0.242 0.428 0.117 0.607 0.264 

Δ 0.307 0.836 1.007 0.664 1.483 1.110 
 

 
Gate leakage current analysis was performed as stated previously. No increase in 

the gate current is observed as a function of increasing proton fluence, which can be 

observed in Figure 43 and Table 11. This contrasts to the results of both the charge 

pumping and hysteresis analysis, which suggests an increase in the oxide trap density 

with irradiation. The lack of an increase could be attributed to an increase in the contact 
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resistance between the gate and the back plate utilized to apply the gate voltage, which is 

similar to what was observed in the semiconducting SWCNT transistors. 

 
 

Table 11: The average gate leakage current at each proton fluence along with the change relative to 
the pre-irradiation measurements for EKSM01 semiconducting/metallic SWCNT transistors. The 
standard deviation is presented as a measure of the device to device consistency of the gate leakage 

current. No trend in the relative decrease in gate leakage current is observed with increasing proton 
fluence. 

 
 EKS01 SEMICONDUCTING/METALLIC 

FLUENCE (cm-2) Gate Leakage Current 
(A) 

Std Dev Δ 

PRE 7.915×1011 1.026×1010 - 
1×1012 5.428×1011 4.335×1011 -3.142×101 

1×1013 7.069×1011 9.581×1011 -1.069×101 
2×1013 5.152×1011 3.538×1011 -3.491×101 
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Figure 43: The average gate leakage current across all reticles of EKSM01 before and after proton 
irradiation. There is no observable increase in the gate leakage current due to increasing proton 

fluence. The gate current decreases slightly with the increasing proton fluence. 
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V. Conclusions 

 

5.1   Raman Study 

 
 From Raman spectroscopy measurements on the semiconducting/metallic 

SWCNTs, an increase in the D/G ratio was observed after proton irradiation to a total 

fluence of 1×1012 protons/cm2. However, after exposure to 2x1013 protons/cm2, a 

decrease in D/G ratio was observed, likely due to annealing. Annealing was also 

observed in the lower-density network semiconducting SWCNT transistors following 

exposure to high proton fluences. However, much smaller changes in the D/G ratio with 

proton fluence were observed due to the low signal-to-noise ratio in the Raman 

spectroscopic measurements. The overall results show that the SWCNTs are radiation 

hardened up to around 1×1012 protons/cm2 where only a 34% increase in the D/G ratio 

was observed in the higher density SWCNT network. The lower density SWCNT 

networks exhibited relatively little change in the D/G ratio, though there was significant 

standard deviation between the measurements.  

 
5.2   Charge Pumping Study 

 
 The charge pumping study showed minimal trends in the interface trap density as 

a function of proton fluence. Significant error is introduced in the interface trap density 

calculations due to the contribution from atmospheric adsorbates to the total measured 

recombination current. Since all measurements are taken at ambient temperature and 

humidity, gases and water readily adsorb to the SWCNT and SiO2 surfaces. A 
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combination of the adsorbates on the SWCNTs and SiO2 surface, along with the 

significant device to device variation, in terms of both performance properties and 

SWCNT network distribution across the gate area, results in significant error in interface 

trap density estimations from charge pumping measurements. Charge pumping 

measurements performed on the higher density semiconducting/metallic SWCNT 

networks revealed an interface trap density that exceeded the atomic density of SiO2. An 

excessive interface trap density is unrealistic and shows that the effect of the adsorbates is 

significant relative to the recombination current generated from traps in the SiO2. 

 
5.3   Current-Voltage Characterization 

 
 Current-voltage characteristics exhibited a decrease in the drain current as a 

function of the proton fluence for all SWCNT transistors. The possibility that this 

decrease in drain current is due to leakage through the gate was removed due to the fact 

that there was no significant increase in the gate leakage current as a function of the 

proton fluence for both transistors sets. Therefore, it can be concluded that the reduction 

in the drain current is due to the substrate charging observed as a significant threshold 

voltage shift as a function of the proton fluence. This charging in the oxide can locally 

shift the Fermi level in the SWCNT semiconductor such that the overall carrier density is 

reduced, reducing the drain current. At the 50% on/off point, a general increase in the 

hysteresis is observed as a function of proton fluence. This increase in hysteresis is due to 

an increase in charge trapping at trap sites located in the SiO2 gate oxide, along with 

adsorbates on the SWCNT surface. Since the transistors were exposed to open air for 24+ 

hours, it can be assumed that the adsorbates had reached a similar saturation level seen 
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prior to irradiation under vacuum, where the adsorbates would desorb from the SWCNT 

surfaces. This results in the conclusion that the major factor in the increase in the 

observed hysteresis is due to the increase in observed interface traps in the gate oxide.   

 
5.4   Future Work 

 
 This work should be repeated with a proton energy of 1.8 MeV, using single 

reticles that have been packaged and wire bonded, allowing for in-situ measurements of 

the individual transistors. Both current-voltage characterization and charge pumping 

could be performed at predetermined fluence steps to determine the change in the 

electrical properties as a function of proton fluence. Additionally, in-situ measurements 

and transistor packaging allow for all measurements to be completed under vacuum, 

removing the effects of adsorbates on the transistor hysteresis and interface trap densities. 

A further study into short term annealing effects versus long term annealing effects on the 

radiation induced damage would be possible with in-situ measurements. The 

experimental plan used in this study left 24+ hours prior to electrical characterization 

where most if not all short term annealing effects were ignored. Furthermore, a study 

involving 1.8 MeV proton fluences up to 1014 protons/cm2 should be explored. Intentions 

existed for exposures up to this fluence; however, the proton beam at the time was not 

capable of producing the flux required to reach this total fluence within a reasonable 

amount of time.  

 Another possible study would be to explore passivation techniques of the exposed 

SWCNT surface based on current research into hydrophobic self-assembled monolayers. 

Passivation would increase the device-to-device consistency in air. To better understand 
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the radiation effects on this passivation layer the goal of these studies should be two fold, 

encompassing both device and thin films. Studying the radiation damage to a passivated 

thin film using Raman spectroscopy and Hall Effect measurements would allow for the 

isolation of the passivation layer and SWCNT radiation damage effects from the damage 

effects observed at the transistor level. Device design could be further improved through 

the use of more radiation hardened gate oxides, such as hafnium oxide or aluminum 

oxide, as opposed to silicon dioxide. 

 
5.5 Overall Conclusions 

 
 Overall, this study compares well to previously published work on both electron, 

ion and alpha particle irradiations, adding to the continuously growing field of carbon-

based devices. A consistent decrease in the device drain current and shift in the threshold 

voltage was observed for all devices under high proton fluences. As observed in this 

study, the majority of the radiation damage observed was due to substrate effects on the 

transistor performance, while SWCNT damage observed through Raman spectroscopy 

was a relatively minor factor.  

 Referring back to Chapter I, the most prevalent radiation environment where a 

transistor would experience radiation damage of significant fluence and energy in 

comparison to the high fluences observed in this study would be a satellite deployed into 

low-earth orbit. Based on the fluences observed in low-earth orbit, transistors would only 

be exposed to a nominal value of 6.4×109 to 6.4×1010 protons/cm2 of 1.8 MeV protons. A 

several orders of magnitude increase in proton fluence from the nominal fluence observed 

in low-earth orbit is required to observe significant radiation damage to devices, though 
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this might not always hold true since enhanced low dose radiation sensitivity (ELDRS) 

could have significant effects on device performances over the expected 5-50 year 

lifetime of a satellite. Given the proper design considerations, SWCNT transistors show 

promise for space and other high radiation environments requiring electronics.    
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